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Preface  v

Preface

How Is Wiley 
Visualizing Different?
Wiley Visualizing is based on decades of research on the use 
of visuals in learning (Mayer, 2005).1 The visuals teach key 
concepts and are pedagogically designed to explain, pres-
ent, and organize new information. The fgures are tightly 
integrated with accompanying text; the visuals are conceived 
with the text in ways that clarify and reinforce major concepts 
while allowing students to understand the details. This com-
mitment to distinctive and consistent visual pedagogy sets 
Wiley Visualizing apart from other textbooks.

The texts ofer an array of remarkable photographs, maps, 
and media from photo collections around the world. Wiley 
Visualizing’s images are not decorative; such images can 
be distracting to students. Instead, they are purposeful and 
the primary driver of the content. These authentic materials 
immerse the student in real-life issues and experiences and 
support thinking, comprehension, and application.

Together these elements deliver a level of rigor in ways 
that maximize student learning and involvement. Wiley 
Visualizing has been proven to increase student learn-
ing through its unique combination of text, photographs, 
and illustrations, with online animations, simulations, and 
assessments. 

1.	 Visual Pedagogy. Using the Cognitive Theory of 
Multimedia Learning, which is backed up by hundreds 
of empirical research studies, Wiley’s authors create 
visualizations for their texts that specifcally support 
students’ thinking and learning—for example, the selec-
tion of relevant materials, the organization of the new 
information, or the integration of the new knowledge 
with prior knowledge. 

2.	 Authentic Situations and Problems. Visualizing 
Geology 4e benefts from an array of remarkable pho-
tographs, maps, and media; these authentic materi-
als immerse the student in real-life issues in geology, 
thereby enhancing motivation, learning, and retention 
(Donovan & Bransford, 2005).2 

3.	 Designed with Interactive Multimedia. Visualizing 
Geology 4e is tightly integrated with WileyPLUS, our 
online learning environment that provides interactive 

multimedia activities in which learners can actively 
engage with the materials. The combination of textbook 
and WileyPLUS provides learners with multiple entry 
points to the content, giving them greater opportunity 
to explore concepts and assess their understanding 
as they progress through the course. WileyPLUS is a 
key component of the Wiley Visualizing learning and 
problem-solving experience, setting it apart from other 
textbooks whose online component is mere drill-and-
practice. 

Wiley Visualizing and the WileyPLUS 
Learning Environment a natural 
extension of how we learn
To understand why the Visualizing approach is efective, it is 
frst helpful to understand how we learn. 

1.	 �Our brain processes information using two main chan-
nels: visual and verbal. Our working memory holds 
information that our minds process as we learn. This 
“mental workbench” helps us with decisions, problem- 
solving, and making sense of words and pictures by 
building verbal and visual models of the information.

2.	 �When the verbal and visual models of corresponding 
information are integrated in working memory, we form 
more comprehensive and lasting mental models. 

3.	 �When we link these integrated mental models to our 
prior knowledge, stored in our long-term memory, we 
build even stronger mental models. When an integrated 
(visual plus verbal) mental model is formed and stored 
in long-term memory, real learning begins.

The efort our brains put forth to make sense of instruction-
al information is called cognitive load. There are two kinds 
of cognitive load: productive cognitive load, such as when 
we’re engaged in learning or exert positive efort to create 
mental models; and unproductive cognitive load, which oc-
curs when the brain is trying to make sense of needlessly 
complex content or when information is not presented well. 
The learning process can be impaired when the information 
to be processed exceeds the capacity of working memory. 
Well-designed visuals and text with efective pedagogical 
guidance can reduce the unproductive cognitive load in our 
working memory.

1 Mayer, R.E. (Ed.) (2005). The Cambridge Handbook of Multimedia Learning. Cambridge University Press.
2 Donovan, M.S., & Bransford, J. (Eds.) (2005). How Students Learn: Science in the Classroom. The National Academy  
Press. Available online at http://www.nap.edu/openbook.php?record_id=11102&page=1.

http://www.nap.edu/openbook.php?record_id=11102&page=1
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Wiley Visualizing is designed for 
engaging and effective learning
The visuals and text in Visualizing Geology 4e are specially 
integrated to present complex processes in clear steps and 
with clear representations, organize related pieces of infor-
mation, and integrate related information. This approach, 
along with the use of interactive multimedia, minimizes 
unproductive cognitive load and helps students engage with 
the content. When students are engaged, they’re reading and 
learning, which can lead to greater knowledge and academic 
success. 

Research shows that well-designed visuals, integrated with 
comprehensive text, can improve the efciency with which a 
learner processes information. In this regard, SEG Research, 
an independent research frm, conducted a national, multisite 
study evaluating the efectiveness of Wiley Visualizing. Its 
fndings indicate that students using Wiley Visualizing prod-
ucts (both print and multimedia) were more engaged in the 
course, exhibited greater retention throughout the course, and 
made signifcantly greater gains in content area knowledge 
and skills, as compared to students in similar classes that did 
not use Wiley Visualizing.3

The use of WileyPLUS can also increase learning. Accord-
ing to a white paper titled “Leveraging Blended Learning for 
More Efective Course Management and Enhanced Student 
Outcomes” by Peggy Wyllie of Evince Market Research & 
Communications, studies show that efective use of online 
resources can increase learning outcomes. Pairing supportive 
online resources with face-to-face instruction can help students 
to learn and refect on material, and deploying multimodal 
learning methods can help students to engage with the material 
and retain their acquired knowledge.

Using the scientifc method 
(Figure 1.3)  This matrix visu-
ally organizes abstract informa-
tion to reduce cognitive load.

Seafoor spreading (Figure 4.5)  Through a logical progression of graph-
ics, this illustration directs learners’ attention to the underlying concept. 
Textual and visual elements are physically integrated. This eliminates split 
attention—when too many sources of information divide attention.

Earth and lunar “soil”—Not the same! (Figure 7.8)  Photos are paired so 
that students can compare and contrast them, thereby grasping the underly-
ing concept. Adjacent caption eliminates split attention.

Bed load and suspended load (Figure 7.11)  From abstraction to reality: 
Linking  the graph to a photo illustrates how  data on the graph relates to 
an actual river.

90 chapter 4 Plate Tectonics

tHinK cRitically
The paleomagnetic record of the 
ocean floor shows that the most 
ancient oceanic crust is only about 
200 million years old. Why might 
this be so?

THE PLANNERProcess diagram

How seafloor spreading works • Figure 4.5

The symmetrical banding of rock ages and magnetic polarities on either side of the midocean ridge provided conclusive 
evidence for continental drift.

Mid-Atlantic Ridge

Millions of years ago
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3 SEG Research (2009). Improving Student-Learning with Graphically Enhanced Textbooks: A Study of the Efectiveness of the  
Wiley Visualizing Series.
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Formulating and testing  

hypotheses • Figure 1.3 

 ∙ Finally, our scientist visits a lake and observes materials 
transported by a river and deposited in lake water. Now 
she sees layers that are parallel, and the particles in each 
layer are approximately the same size. Hypothesis 3 has 
potential, but more testing is needed.

Retest, test again, and formulate a theory. While visiting 
the lake, our scientist notes that plants are growing in the 
lake. To further verify Hypothesis 3, she takes an addition-
al step and hypothesizes that if the material that formed the 
rocks really was deposited in a lake, the remains of aquat-
ic plants might still be present. If, on further observation, 

she fnds fossilized freshwater plant remains in the layered 
rocks, she will be even more confdent that she is on the 
right track. Verifcation of Hypothesis 3 is now stronger.

Once a hypothesis has withstood numerous tests, scien-
tists become more confdent in 
its validity. If it becomes clear 
that the hypothesis has with-
stood testing and retesting, and 
that it has general applicability 
to more than one specifc cir-
cumstance, it may be elevated 
to a theory. This is still not 

theory A hypothesis 
that has been tested and 
is strongly supported 
by experimentation, 
observation, and 
scientific evidence.

Hypothesis 1 fails Hypothesis 2 fails

Test:

Visit a modern glacier.
This is the terminus of Pré 
de Bar glacier in the Italian 

Alps.

Test:

Look at a sand dune, a 
modern wind-borne 

sediment. This is a trench in 
a dune near Yuma, Arizona.

Test:

Look at modern water-laid 
sediments. These are in a 
lake in eastern Canada.

Scientist sees a jumble 
of particles of many 
sizes. Layers are not 

parallel.

Scientist sees that 
particles are the same 
size but layers are not 

parallel.

Hypothesis 3 is supported

Hypothesis 2

Sediment transported and 
deposited by wind

Hypothesis 3

Sediment transported and 
deposited in water

Hypothesis 1

Sediment transported and 
deposited by a glacier

TRASHTRASH

Scientist sees particles are 
the same size in each layer,

and layers are parallel.

Observe, investigate, and gather data

Formulate hypotheses to explain observations

Test hypotheses

Discard or confirm hypotheses

Murck_c01_001-029hr3.indd   5 5/21/15   2:04 PM

182 chapter 7 Weathering and Erosion

Soil formation and the properties of the resulting soil are 
infuenced by fve main factors, which of course are very sim-
ilar to the factors that infuence weathering. These are (1) the 
characteristics of the parent material (that is, the bedrock from 
which the soil is formed); (2) climate; (3) topography; (4) the 
activity of living organisms (both microscopic and macro-
scopic); and (5) time. The combined infuence of these soil- 
forming factors determines the main properties of any soil. To 
learn more about soil formation, see Where Geologists Click.

Of these factors, the composition of the parent material 
exerts the most fundamental infuence on the chemical compo-
sition of the soil. Climate and topography greatly infuence the 
rate and type of weathering that occurs. Climatic factors such 
as the amount of precipitation and humidity also control soil 
chemistry, color, and other properties to a great extent. Living 
organisms and the organic matter that they contribute form the 
crucial link between regolith or sediment and true soil. And f-
nally, the length of time that soil formation has been operating 
controls the degree to which all of these processes contribute 
to the development of a deep soil layer (see Remember This!).

reMeMBer this! How long has there been soil on 
planet Earth? To answer this question, think about what 
is required for soil formation (weathering, water, bio-
logical activity); then think about Earth’s history. Revisit 
The Geological Column (Chapter 3) and The Origin of the 
Solar System (Chapter 1) to see if you can determine when 
soil-forming processes might have begun.

Because of the central role of biological activity in soil 
formation, Earth is the only planet in the solar system that 
has true soil. Other rocky bodies in the solar system have 

Earth and lunar “soil”—Not the same! • Figure 7.8 

blankets of loose rocky material (regolith) that have been 
pulverized to a very fne texture, but their regoliths lack 
 humus (figure 7.8).

These microscopic views of Earth soil (a) and lunar regolith (b) show some sig-
nificant differences. Earth soil contains organic material and hydrous minerals 
such as clay, while lunar regolith contains none of either.

think criticaLLy
Can you think of two reasons why Earth is the only planet 
(that we know of) where true soils occur?

Where Geologists cLick 

Virtual soil science Learning resources

The Virtual Soil Science Learning Resources website, co-
ordinated through the University of British Columbia 
Faculty of Land and Food Systems, provides access to 
a broad network of online soil-related resources. These 
include virtual laboratory exercises, soil maps, land im-
pact assessment tools, and educational activities that 
focus on basic soil principles.

c07_WeatheringAndErosion_Web_Optimized.indd   182 02/09/15   9:29 pm

Erosion and Mass Wasting 187

Bed load and suspended load • Figure 7.11 

A typical stream will transport a bed load, a suspended load, and a dissolved load.

Relative
water velocity

Long-term
suspension

Suspended load
(contains silt
and clay)

Bed load (contains sand,
pebbles, boulders)

Short-term
suspension

Turbulent
eddies

SaltationSurface creep

H
ei

gh
t a

bo
ve

 s
tr

ea
m

 b
ed

Dissolved load

Massive dust storm • Figure 7.12 

In this photo a wall of dust approaches Lubbock, Texas, the result 
of a massive dust storm on the afternoon of October 17, 2011.

air, ice is extremely viscous. Glacial ice therefore moves 
only by laminar flow, but its high viscosity also means that 
it is capable of carrying a wide range of sediment sizes—
even very large boulders (Figure 7.13).

Glaciers contribute both to mechanical weathering and 
to the erosion of weathered material. Flowing ice scrapes 
up weathered rock and soil, and plucks out large blocks of 
bedrock. The glacier transports the load of sediment that it 
scrapes up, along with any additional material that falls onto 
its surface from adjacent slopes. The load of rock fragments 
carried at the bottom of the glacier—essentially the glacier’s 
bed load—rasps and polishes the bedrock, carving long 
grooves that are indicative of the direction of ice flow. You 
saw an example of glacial grooves in Chapter 4, when we 
discussed the evidence Alfred Wegener used to determine 
the extent of glaciation on the supercontinent Pangaea (see 
Figure 4.3e).
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Student engagement is more than just exciting videos or interesting animations—engagement 
means keeping students motivated to keep going. It is easy to get bored or lose focus when 
presented with large amounts of information, and it is easy to lose motivation when the rele-
vance of the information is unclear. The design of WileyPLUS is based on cognitive science, 
instructional design, and extensive research into user experience. It transforms learning into 
an interactive, engaging, and outcomes-oriented experience for students. 

How Are the Wiley Visualizing  
Chapters Organized?

Each Wiley Visualizing chapter engages students 
from the start
Chapter opening text and visuals introduce the subject and connect the student with the 
material that follows.

12 CHAPTER OUTLINE

The Ocean 314
• Ocean Basins
• The Composition of Seawater
• Layers in the Ocean
• Ocean Currents

 ■ Where Geologists Click: 
NOAA Ocean Explorer
Where Ocean Meets Land 320
• Changes in Sea Level

 ■

Causes Tides?
• Waves
• Shorelines and Coastal 

Landforms
 ■

and the Deepwater Horizon Oil 

 ■ Amazing Places: The Florida 

The Atmosphere 333
• Composition of Earth’s 

Atmosphere
• Layers in the Atmosphere
• Movement in the Atmosphere

 ■

Where Ocean Meets 
Atmosphere 340
• Ocean–Atmosphere–Climate 

Interactions
• Tropical Cyclones
• El Niño and La Niña

CHAPTER PLANNER

• 
opening story.

• 
each section: 
p. 314 p. 320 p. 333 p. 340

• 
visuals. Answer any questions.

• 
• 
• 
• 
• 
• 

 

• 
Terms.

• 
Creative Thinking Questions.

• 
this picture?

• 
check your answers.

THE OCEAN 
AND THE 

sediment.

again when the BP Deepwater Horizon

in this chapter.

Chapter Outlines  
anticipate the content.

The Chapter Planner gives students 
a path through the learning aids in the 
chapter. Throughout the chapter, the 
Planner icon prompts students to use 
the learning aids and to set priorities 
as they study.

Chapter Introductions illus-
trate key concepts in the chapter 
with intriguing stories and strik-
ing photographs.
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Wiley Visualizing guides students 
through the chapter
The content of Wiley Visualizing gives students a variety 
of approaches—visuals, words, interactions, video, and 
assessments—that work together to provide a guided path 
through the content.

Geology InSight features are multipart visual sections that 
focus on a key concept or topic in the chapter, exploring it in 
detail or in broader context using a combination of photos, 
diagrams, maps, and data.

Learning Objectives at the start of each section 
indicate in behavioral terms the concepts that 
students are expected to master while reading the 
section.

Process Diagrams provide in-depth coverage of processes 
correlated with clear, step-by-step narrative, enabling 
students to grasp important topics with less efort.

Geology InSight Sorting, roundness, and sphericity • Figure 8.2

Sorting, roundness, and sphericity of clasts are important characteristics by which  
sediment is  They can also tell geologists a lot about where the sediment  
came from and what types of erosional processes it has experienced.

ASK YOURSELF
Have a look at the clasts in the “moderately sorted” sediment shown in (a). How would you 
describe the general shape of the clasts?

a. High sphericity and rounded

b. Intermediate sphericity and angular

c. Low sphericity and rounded

d. High sphericity and angular

THE PLANNER

Very poorly sorted Moderately sorted

SORTING      

Very well sorted

Angular Intermediate

ROUNDNESS

Rounded

High sphericity

Low sphericity

High sphericity

Low sphericity

High sphericity

Low sphericity

Sediment 199

c08_FromSedimentToSedimentaryRock_Web_Optimized.indd   199 02/09/15   9:13 pm

14	 Chapter 1	 Earth	as	a	Planet

Process Diagram

How the solar system was formed • Figure 1.12

This	series	of	diagrams	shows	the	nebular	hypothesis,	which	explains	how	our	solar	system		
formed	from	a	rotating	cloud	of	interstellar	gas	and	dust.

       As gas cloud contracts, it 
spins faster and faster, 
forming a central bulge and a 
wide disk.

Sun

AsteroidsMars

Venus

Earth

Mercury

       Contraction raises temperature; process of nuclear 
fusion begins in central bulge—Sun begins to shine. Outer 
disk cools—now contains wide swath of rocky debris. 
Larger chunks of debris begin to attract smaller chunks by 
gravity, thereby growing larger (accretion).  

       Within a few tens of 
millions of years, almost all the 
debris has accreted into 
today's planets.

2

4
3

        Cloud of matter
(nebula) begins
to contract
gravitationally.
Process may have
been initiated or
accelerated by
shock waves
from supernova
explosion
(not shown).

1

2006, the International Astronomical Union (IAU) adopted 
a new designation of dwarf planet for an object that orbits 
the Sun, is large enough that its own gravity has pulled it 
into a spherical shape, but its gravity is too small to have 
“cleared the neighborhood around its orbit” by gravitational 
attraction of surrounding debris. Under the new defnition, 
Pluto is a dwarf planet, and so is the large asteroid Ceres. 
Although the decision aroused controversy (especially 
among fans of Pluto), it is a normal part of science to adopt 
new terminology when the old nomenclature has been based 
on  assumptions that later turn out to be fawed.

thInk CrItICally
If	you	were	a	planetary	scientist	and	had	a	chance	to	work	with	an	astronomer	studying	very	
young	suns,	what	kind	of	evidence	would	you	look	for	in	order	to	test	the	nebular	hypothesis?	

THE PLANNER

ask yOUrsElf
Which	one	of	the	following	pairs	does	not	belong	with	
the	others?

a. Jupiter	and	Saturn

b. gaseous	and	thick	atmosphere

c. Earth	and	Venus

d. jovian	and	far	from	the	Sun

e. large	and	low-density

Case Studies are in-depth examinations of fascinating 
and important issues in geology.

Products of Weathering 185

case Study

The “Little Grand Canyon”

Providence Canyon in Georgia is a 
gorgeous example of a canyon car-
ved into deeply weathered soil, but 
it is also a dreadful example of poor 
soil management. In figure a, in the 
canyon wall you can readily spot the 
dark brown A horizon, the bright red 
B horizon that is full of clay, and the 
paler E horizon. This is a good, pro-
ductive soil, but unfortunately much 
of it has been washed away.

Some people call Providence 
Canyon the “Little Grand Canyon” 
because of its layered appearance, 
but in reality they are very different. 
The Grand Canyon was carved into 
sedimentary rock strata millions of 
years ago, by natural erosional pro-
cesses. Providence Canyon is less 
than 200 years old; it, too, was for-
med by erosion but greatly accelera-
ted by human activity.

There was no canyon here when 
settlers from Europe began farming in the early 1800s. The 
farmers plowed straight up and down the hills, and the fur-
rows rapidly developed into gullies. By 1850, the gullies were 
1 to 2 meters deep. The farmers had to abandon their fields, 
but by then, erosion in the gullies was running amok. The 
canyon is now more than 50 meters deep. unfortunately, 
there are many such locations in North America.

THE PLANNER

In the early 20th century, scientists involved with ero-
sion studies pointed out that water flowing in plowed land 
needed to be controlled. To fight erosion, farmers now use 
contour plowing (figure b). Instead of going in straight 
lines downhill, the furrows follow the contour of the land. 
This slows runoff and inhibits the formation of gullies, hel-
ping to retain the topsoil on the field.

c07_WeatheringAndErosion_Press_Optimized.indd   185 02/09/15   9:20 pm

2  Earth as a Planet

WHAT IS GEOLOGY?

The word geology comes from two Greek roots: geo-, 
meaning “Earth,” and logis, meaning “study” or “sci-
ence.” The science called geology encompasses the 

study of our planet: how it formed; the nature of its inte-
rior; the materials of which it is 
composed; its water, glaciers, 
mountains, and deserts; its 
earthquakes and volcanoes; its 

resources; and its history—physical, chemical, and biologi-
cal. Scientists who make a career of geology are geologists. 
Geology, like all other sciences, is based on factual obser-
vations, testable hypotheses, reproducible procedures, and 
open communication of information.

The Branches of Geology
The study of geology is traditionally divided into two broad 
subject areas: physical geology and historical geology. 
Physical geology is concerned with understanding the pro-
cesses that operate at or beneath the surface of Earth and the 
materials on which those processes operate. Some examples 
of geologic processes are mountain building, volcanic erup-
tions, earthquakes, river flooding, and the formation of ore 
deposits. Some examples of materials are minerals, soils, 
rocks, air, and water.

Historical geology, on the other hand, is concerned 
with the sequence of events that have occurred in the past. 
These events can be inferred from the evidence left in Earth’s 
rocks. Through the findings of historical geology, scientists 
seek to resolve questions such as the following: When did 
the oceans form? Why did the dinosaurs die out? When did 
the Rocky Mountains rise? and When and where did the 
first trees appear? Historical geology gives us a perspective 
on the past. It also establishes a context for thinking about 
present-day changes in our natural environment. This book 
is concerned mainly with physical geology, but it includes 
many lessons we can learn from historical geology.

Within the traditional domains of physical and histori-
cal geology are many specialized disciplines, some of which 
are illustrated in . Economic geology, for example, 
is concerned with the formation and occurrence of, and the 

search for, valuable mineral deposits. Environmental geol-
ogy focuses on how materials and processes in the natural 
geologic environment affect—and are affected by—human 
activities. Volcanologists study volcanoes and eruptions, 
past and present; seismologists study earthquakes; mineralo-
gists undertake the microscopic study of minerals and crys-
tals; paleontologists study fossils and the history of life on 
Earth; structural geologists study how rocks break and bend. 
These specialties are needed because geology encompasses 
a broad range of topics.

To a certain extent we are all geologists, even though 
only a few of us make a career out of geology. Everyone 
living on this planet relies on geologic resources: water, 
soil, building stones, metals, fossil fuels, gemstones, plastics 
(from petroleum), ceramics (from clay minerals), glass (from 
silica sand), salt (a mineral called halite), and many others. 
Geologic processes affect us every day. Sometimes we must 
make decisions based on our understanding of geology, such 
as how to manage erosion of a coastal property, or whether 
to buy a home located on a cliff or next to a river. We also 
influence the geologic environment through our daily activi-
ties, whether we are drinking water that came from an aqui-
fer, digging a trench, or planting trees to control soil erosion. 
This book will help you to become better informed and more 
mindful of these interactions. As a result, you will be better 
equipped to make decisions about Earth materials and pro-
cesses that affect your life.

 
Method 

 is an approach that we use to study, observe, clas-
sify, investigate, test, and understand the behavior and char-
acteristics of the world around 
us. The term science also refers 
to the vast body of knowledge 
about the natural world that has 
been built up, little by little, 
over many centuries of system-
atic investigation by scientists. Technology is the application 
of scientific knowledge for practical purposes. Civilization 
and our entire modern way of life are based on this body of 
knowledge and its applications.

Scientific knowledge changes constantly; it grows and 
evolves through testing, interpretation, discussion, and 
reexamination. When scientists appear to argue or debate 
their findings, it means that science is working as it should: 
Scientists tear apart and debate each other’s work to test the 
validity and robustness of the interpretations. It is difficult 
or even impossible for scientists to be completely detached 
from the materials and processes they are studying, but they 
strive to be as objective as they can be. Each new interpreta-
tion is grounded in the context of the scientific understand-
ing that preceded it. The entire body of scientific knowledge 
is open to be studied and tested by anyone who is willing to 
put in the effort to do so.

geology 

A systematic 
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What a Geologist Sees highlights a con-
cept or phenomenon that would stand out 
to a geologist. Photos and fgures are used 
to improve students’ understanding of the 
usefulness of a geology perspective and to 
develop their observational skills.

The Amazing Places sections take the student to a 
unique place that provides a vivid illustration of a 
concept in the chapter. Students could easily visit 
most of the Amazing Places someday and so con-
tinue their geologic education.

174 chapter 7 Weathering and Erosion

Amazing Places

Monadnock—and Monadnocks

THE PLANNER

think criticaLLy
Monadnocks are formed when the rock around them is eroded. If the 
resistant rock mass was in the form of a long, horizontally continuous 
stratum, what would the resulting feature look like after the surrounding 
material eroded away?

Joints are not always straight. In a process called sheet 
jointing or exfoliation (figure 7.3a), large, curved slabs of 
rock peel of from the surface of a uniformly textured igne-
ous rock. As with other types of joints, sheet jointing may 

be due to pressure release or a combination of forces that 
contribute to mechanical weathering.

Mechanical weathering takes place in four main 
ways—through freezing of water, formation of salt crystals, 
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Where Geologists Click showcases a website that profes-
sionals use and encourages students to try out its tools.

122 Chapter 5 Earthquakes and Earth’s Interior

Earthquake Magnitude and Damage

times as much energy as a quake of M6. Note that the MMI 
scale and the moment and Richter magnitude scales are 

Richter magnitude scales are quantitative and exact.

THE PLANNER

THINK CRITICALLY

 6

 In deter

 
Widespread destruction is clearly evident. With many 

 7

 The geol

ence of police suggests panic and the need for control.

Think Critically  questions 
let students analyze the mate-
rial and develop insights into 
essential concepts.

94 Chapter 4 Plate Tectonics

Where Geologists CLICK

Google Earth: Earthquakes and Volcanoes

You can use Google Earth to explore the locations of earthquakes and active volcanoes relative to plate boundaries. First, 
you will need to download Google Earth to your laptop; it’s free. In the menu at left, open “Layers” and then “Gallery.” Click 
“Earthquakes” and “Volcanoes” to show these items on the map.

In the screen capture shown here, we are looking at recent earthquakes and volcanic activity in the Aleutian Islands, between 
Alaska and Siberia. The Aleutians are volcanic islands that mark a boundary between two plates. As you move through the 

-
ary it is, and which way the plates are moving. What is the relationship between the volcanic islands and the adjacent deep 
trench? What is the name of the process that is occurring here? Zoom to some other locations that you think would be tec-

be confused with the better-known epicenter, which is the 
point on Earth’s surface that lies directly over the focus. Both 
the locations of earthquake epicenters and the depths of their 
foci provide useful information about the characteristics of 
plate margins (Figure 4.9).

Divergent margins, also 
called rifting centers or 
spreading centers, occur 
where two plates are moving 
apart (Figure 4.9a). They can 
occur either in continental or 
oceanic plates. In East Africa, 
for example, the African Plate 
is being stretched and torn 
apart, creating long rift valleys. 
Eventually, a new ocean may 

form in the widening rift; a 
modern example of this is the 
Red Sea (see What a Geologist 
Sees). Where an oceanic plate 
is splitting apart, the result is 
a midocean ridge, and the one 
place in the world where a mid-
ocean ridge can be seen above 
the sea is Iceland. Earthquakes 
are common along divergent 
margins because the plates are 
fracturing and splitting apart; 
however, the earthquakes tend 
to be weak, with shallow foci.

Along transform fault 
margins plates slide past one 

divergent margin A 
boundary along which 
two plates move apart 
from one another.

rift valley A linear, 
fault-bounded valley 
along a divergent plate 
boundary or spreading 
center.

midocean ridge A 
long submarine ridge 
in an ocean basin, 
marking the location 
of a divergent plate 
boundary and magma 
upwelling associated 

transform fault 
margin A fracture in 
the lithosphere where 
two plates slide past 
each other horizontally 
(or laterally).
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Coordinated with the section-opening Learning 
Objectives, at the end of each section Concept 
Check questions allow students to test their compre-
hension of the learning objectives.1. What physical and chemical changes happen in 

rock undergoing metamorphism?
2. What distinguishes burial metamorphism from 

regional metamorphism?
3. How does regional metamorphism in 

a subduction zone differ from regional 
metamorphism in a collision zone?

4. What process changes the chemical 
composition of a rock, rather than just its 
texture or mineral assemblage? 

GeoDiscoveries Media Library is an 
interactive media source of animations, 
simulations, and interactivities allow-
ing instructors to visually demonstrate 
key concepts in greater depth.
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Student understanding is  
assessed at different levels
Wiley Visualizing with WileyPLUS ofers students lots of 
practice material for assessing their understanding of each 
study objective. Students know exactly what they are getting 
out of each study session through immediate feedback and 
coaching.

The Summary revisits each major sec-
tion, with informative images taken 
from the chapter. These visuals reinforce 
important concepts.

What is happening in this picture? presents a 
photograph that is relevant to a chapter topic and 
illustrates a situation students are not likely to have 
encountered previously. 

Visual end-of-chapter Self-Tests pose review 
questions that ask students to demonstrate their 
understanding of key concepts.

132 Chapter 5 Earthquakes and Earth’s Interior

CONCEPT CHECK

crust and mantle?

3. How 
the outer core?

THE PLANNER

1 Earthquakes and Earthquake Hazards 107
• Seismology relates earthquakes to the processes of plate tec-

tonics. Although the motion of tectonic plates is very grad-
ual, friction causes the rocks in the crust to jam together for 
long periods and then to break suddenly and lurch forward, 
causing an earthquake to occur. Earthquakes can cause large 
vertical or horizontal displacements of the ground, but much 
of the damage they cause results from the violent shaking that 
accompanies the displacement.

• The shaking motion experienced during an earthquake can 
be explained by the elastic rebound model, which says that 
the energy stored in bent and deformed rocks is released as 
seismic waves. After an earthquake, the rocks return to their 
undeformed state.

• In many cases the destructiveness of earthquakes is magni-
fied by secondary hazards, such as fires, landslides, liquefac-
tion (see the photo), and tsunamis. Proper building design 
and earthquake preparedness can greatly reduce the loss of 
life from earthquakes and secondary hazards.

2 
• Seismographs produce recordings of seismic waves that are 

called seismograms. In a basic seismograph (see the dia-
gram), a pen is attached to a heavy suspended mass. Seismic 
waves cause the paper to shake while the pen stays still and 
traces a wavy line on the vibrating paper.

Seismograph • Figure 5.7

Horizontal Earth motion
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• Earthquakes produce three main types of seismic waves: 
compressional waves, or P waves (primary waves); shear 
waves, or S waves (secondary waves); and a variety of sur-
face waves. Compressional and shear waves are called body 
waves because they travel through Earth’s interior.

• Compressional waves travel faster than shear waves and 
hence arrive at seismographs first. The difference in arriv-
al times between the P and S waves allows seismologists to 
compute the distance, but not the direction, to the focus of 
an earthquake. To determine the precise location of the epi-
center, seismologists need measurements from three sepa-
rate seismic stations. They can then determine the location 
by triangulation.

• The Richter and moment magnitude scales are measures of 
earthquake intensity that can be determined regardless of the 
distance to the earthquake or the amount of damage done. 
Both are logarithmic scales, in which each unit of magnitude 
corresponds roughly to a 10-fold increase in the amplitudes 
of seismic waves, but a 32-fold increase in the amount of 
energy released by the earthquake. The Modified Mercalli 
Intensity scale is a descriptive scale based on the extent of 
earthquake damage. On the MMI scale, the intensity is high-
est near the epicenter.

• Short-term forecasting of earthquakes is still very unreliable. 
Scientists have concentrated their efforts on finding precur-
sor phenomena, such as foreshocks, but with limited success. 
However, long-term forecasting can provide a good idea of 
which regions are at risk. One of the main tools of long-term 
forecasting is paleoseismology, which reveals when past 
earthquakes occurred in a given region, as well as the period-
icity and magnitudes of past earthquakes.

high-pressure experiments on iron. The main difference 
between the inner core and outer core is thus a difference 
in the physical state rather than the composition. As heat 
escapes from the core and works its way to the surface, the 
core is gradually crystallizing. Thus the solid inner core 
must be growing larger, though very slowly.

It should be clear by now that what happens deep in the 
interior of Earth profoundly affects the surface. The release 
of heat from the interior is an important driving force for 
plate tectonics, which in turn is the major uplifting force in 
shaping Earth’s varied landscapes and topographies.

408 

In this “Calvin and Hobbes” comic 
strip, Calvin tells his pet tiger, Hobbes, 
about his theory that the days are 
getting colder because the Sun is 
going out. Let’s call this Hypothesis 
1. His father, on the other hand, says 
the days are getting colder because 
Earth is getting farther from the Sun—
Hypothesis 2. Another reasonable 
hypothesis is that Earth’s axis is tilted, 
which makes the sunlight less direct in 
winter—Hypothesis 3.

1.

2.

 1. How did sea-surface temperatures at the peak of the last glaci-
ation differ from those of the present? Why do you think some 
regions of the ocean have shown more change than others? 
What influence would these changes have had on atmospheric 
circulation and weather?

 2. How can isotopic analyses of deep-sea sediment reveal chang-
es in global ice volumes?

 3. At the height of the most recent ice age, vegetation in North 
America south of the ice front must have been very differ-
ent from the vegetation today. Do some research and find out 
what is known of vegetation changes in your area over the past 
20,000 years.

 4. Choose two human climate proxy records and two natural 
climate proxy records. Describe in detail how the phenome-
na are  controlled by or mimic climate, what type of climate 

-er eht gnol woh dna ,meht morf devired eb nac noitamrofni 
cords have been kept.

 5. Find out if your city, state, province, or country has set goals for 
the reduction of carbon dioxide emissions to limit its contribu-
tion to global warming. What steps have been taken to meet these 
goals?

 6. Consider the maps in Figure 14.18 a and b. On the left is RCP 
2.6, the “peak and decline” scenario for CO2 emissions; on 
the right is RCP 8.5, the “continued high emissions” scenar-
io. Locate your home region on the maps. What do the pro-
jections hold for RCP 2.6 in this location? Wetter? Warmer? 
Cooler? Drier? By how much? How different is the RCP 8.5 
projection for this location?

2 • Figure 
14.18
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106 Chapter 4 Plate Tectonics

WHAT IS HAPPENING IN THIS PICTURE?
From September 14 to October 4, 2005, a 
series of earthquakes and eruptions in the 
Afar Desert in Ethiopia opened up the rift 
seen in this photograph, which is 60 meters 
wide at its widest point. The rift is part of a 
much more extensive depression where two 
plates, the African and the Somalian plates, 
are spreading apart. (Older rifts can also 
be seen in the background.) Compare this 
photo to the map and satellite image in this 
chapter’s What a Geologist Sees.

SELF-TEST

(Check your answers in Appendix D.)
 1. The work of geologists over the years has supported 

Wegener’s contention that the current continental masses 
were assembled into a single supercontinent, which Wegener 
called _______.
a. Pangaea d. Tethys
b. Transantarctica e. Laurasia
c. Gondwana

 2. Which of the following lines of evidence supporting 
continental drift did Wegener not use when he first proposed 
his hypothesis?
a. the apparent fit of the continental margins of Africa and 

South America
b. ancient glacial deposits of the southern hemisphere
c. the apparent polar wandering of the magnetic north pole
d. the close match of ancient geology between West Africa 

and Brazil
e. the close match of ancient fossils on continents separated 

by ocean basins
 3. Analysis of apparent polar wandering paths led geophysicists 

to conclude _______.
a. that Earth’s magnetic poles have wandered all over the 

globe in the past several hundred million years
b. that the continents had moved because it is known that the 

magnetic poles themselves are essentially fixed

c. that the apparent wandering path of a continent provides a 
historical record of the position of that continent over time

d. Both b and c are correct.
 4. _______ is the process through which oceanic crust splits 

and moves apart along a midocean ridge and new oceanic 
crust forms.
a. Continental drift c. Seafloor spreading
b. Paleomagnetism d. Continental rifting

 5. This map shows the age of the seafloor, across the northern 
extent of the Atlantic Ocean. The Mid-Atlantic Ridge can 
be seen stretching roughly north–south (in the yellow band) 
down the middle of the map. Yellow through red colors 
show rocks of similar age. Number them on the map from 1 
(oldest) through 5 (youngest).

THINK CRITICALLY
What will happen to Ethiopia if the 
spreading continues?

Think Critically  questions ask 
students to apply what they have 
learned in order to interpret and 
explain what they observe in the 
image.
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spreading continues?

Critical and Creative Thinking Questions chal-
lenge students to think more broadly about chap-
ter concepts. The level of these questions ranges 
from simple to advanced; they encourage students 
to think critically and develop an analytical under-
standing of the ideas discussed in the chapter.
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Why Visualizing 
Geology 4e?
The goal of Visualizing Geology 4e is to introduce students 
to geology and Earth system science through the distinctive 
mode of visual learning that is the hallmark of the Wiley Visu-
alizing series. Students will learn that the geologic features 
we see and experience result from interactions among three 
grand cycles, which extend from Earth’s core to the fringes 
of our atmosphere: the tectonic cycle, the rock cycle, and the 
water cycle. We place special emphasis on plate tectonics 
because it is an organizing principle and a framework that 
unifes our understanding of geologic activity on our planet. 

Case studies throughout the book bring the science of geology 
into focus in students’ everyday lives. We ft current events into 
a larger picture that explains how Earth works and why such 
events happen. Students will also learn about how human ac-
tions afect Earth systems and vice versa. The unique format 
of Wiley Visualizing allows us to reinforce the textual content 
with arresting images that are, in many cases, the next best thing 
to being there. Geology invites us to travel outside our familiar 
environment to distant parts of the world. As in previous edi-
tions of Visualizing Geology, we have had access to some of the 
best photos, photographers, and photo researchers in the indus-
try. With such a terrifc photography and art program, and with 
features such as Amazing Places and What A Geologist Sees in 
every chapter, we seek to instill what words sometimes cannot: 
a sense of wonder about the planet we call home.

Organization
Visualizing Geology 4e is organized as follows: 

•	 In Chapters 1 through 4 we outline Earth system science 
as an approach to the study of our planet and our 
environment. We describe the various kinds of rocks and 
minerals, explain the ways in which geologists learn about 
Earth’s changes over time, and present the unifying theory 
of plate tectonics. 

•	 In Chapters 5 and 6 we discuss the hazards of earthquakes 
and volcanoes and explain how they relate to the tectonic 
cycle, and the formation of magma, lava, and igneous rock. 

•	 Chapters 7 through 10 describe the major processes of 
the rock cycle—weathering, erosion, sedimentation, 
lithifcation, and metamorphism. In addition, students will 
learn about folding, faulting, and structural geology, and 
the basics of geologic maps and cross-sections. 

•	 In Chapters 11 through 13 we turn our attention to the 
water cycle and explain the ubiquitous efects of water 
on Earth’s surface, underground, and in the atmosphere. 
We devote a full chapter to deserts and glaciers, the two 

extreme environments that in recent years have become 
bellwethers of climate change. 

•	 In Chapter 14 we address the record of climate changes, 
with up-to-date fgures, data, and analysis from the IPCC 
5th Assessment Report. 

•	 Finally, Chapters 15 and 16 reintegrate the various parts 
of the Earth system to draw conclusions about two topics 
of great interest to students and to society as a whole: 
the history of life on Earth, and the future of the natural 
resources on which humanity depends.

Changes in the New Edition
The fourth edition has been updated and modifed in response 
to suggestions and reviews by many of our users. We have 
added many new examples and case studies; refreshed almost 
all of the Where A Geologist Clicks resources; added new 
material to the Instructor Resources and student Self-Test 
Questions; and expanded, deepened, and updated the coverage 
on many topics.

Remember This! is a new feature that appears several times in 
each chapter, inviting students to think about the connections 
between the topics in that chapter and previous chapters of the 
book. It is extremely important for students to think beyond 
the structure imposed by the book’s chapters, to appreciate the 
fundamental connections between various Earth processes. 
New Ask Yourself and Think Critically exercises also will help 
students develop their critical analytical skills. And of course, 
as usual, we have added a number of new Amazing Places, 
chapter-opening vignettes, and Case Studies.

We have added new vocabulary terms to our basic Glos-
sary, while retaining our goal of avoiding unnecessarily 
terminology-heavy language. We also have compiled a 
Glossary of “Level 2” terms—the terms that are italicized 
(rather than bolded) throughout the book—and these will 
be available for use by instructors who want to raise the 
level of scientifc terminology in their courses.

This book is intended as a textbook for an introductory 
college-level course in geology; it is also used in senior high 
school-level courses. We try to keep the writing accessible 
and engaging, but rigorous. Because our emphasis is on 
physical processes, the book could be used as well for an 
introductory physical geology or physical geography course. 
We do not expect that most of the students who read this 
book will go on to become geologists, but we hope that all 
readers will come to have a better understanding of, and ap-
preciation for, their home planet. For those students do who 
want to take further courses in geology—and we hope there 
are many—we aim to provide a solid, sufcient, and chal-
lenging background to do so with confdence.

– the Authors
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How Does Wiley 
Visualizing Support 
Instructors?

Wiley Visualizing Site 
The Wiley Visualizing site hosts a wealth of information for 
instructors using Wiley Visualizing, including ways to max-
imize the visual approach in the classroom and a white paper 
titled “How Visuals Can Help Students Learn,” by Matt 
Leavitt, instructional design consultant. Visit Wiley Visual-
izing at www.wiley.com/college/visualizing. 

Wiley Custom Select 
Wiley Custom Select gives you the freedom to build your 
course materials exactly the way you want them. Ofer your 
students a cost-efcient alternative to traditional texts. In a 
simple three-step process create a solution containing the 
content you want, in the sequence you want, delivered how 
you want. Visit Wiley Custom Select at http://customselect.
wiley.com.

Book Companion Site  www.wiley.com/

college/murck 
All instructor resources (the Test Bank, PowerPoint presen-
tations, and all textbook illustrations and photos available as 
chapter PowerPoint slides) are housed on the book compan-
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In every chapter in this book, we take you to an “Amazing Place” 
that is both beautiful and of geologic interest.
Here is our itinerary:
Chapter 1: Meteorite Impact Craters, to see evidence of the way 
Earth was assembled
Chapter 2: Naica Mine in Chihuahua, Mexico, for a look at the 
world’s largest crystals
Chapter 3: Famous Unconformities, to see evidence of ancient 
uplift and erosion
Chapter 4: The Hawaiian Islands, to see plate tectonics and volca-
noes in action
Chapter 5: Point Reyes, California, to explore the most famous 
fault in America, the San Andreas fault
Chapter 6: Sierra Nevada Batholith and Yosemite National Park, 
for examples of processes that formed the batholith
Chapter 7: Mt. Monadnock—and Monadnocks, for a look at the 
power of erosion
Chapter 8: The Navajo Sandstone, for its beautiful sedimentary 
rock formations

Chapter 9: The Canadian Rockies, for spectacular examples of 
folding and thrusting
Chapter 10: The Source of Olmec jade, for evidence of  
high-pressure metamorphism
Chapter 11: Lechuguilla Cave, in New Mexico, for incredible 
shapes made by groundwater
Chapter 12: The Florida Keys Reef, to visit a geologic formation 
that is also alive
Chapter 13: The Northwest Passage, Alaska, to explore the 
successful and unsuccessful sailings through the centuries
Chapter 14: Fossil Forests of the High Arctic, to see  
remarkable preservation of forests that grew in the now- 
frozen north
Chapter 15: The Burgess Shale, for its fossil record of the frst 
animals on Earth
Chapter 16: Saugus Iron Works, Massachusetts, to see the frst 
iron-smelting operation in North America

The most amazing place of all, however, is Earth itself—the only 
world in the universe where we know that life exists.

Amazing Places

NASA
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•	□Answer the Critical and 
Creative Thinking Questions.

•	□Answer What is happening in 
this picture?

•	□Complete the Self-Test and 
check your answers.

The Blue Marble
Photographs of Earth from space have profoundly influenced our thoughts 
about Earth. Getting a whole-Earth photograph is difficult—planes don’t do 
the job; you must be out in space, and the Sun has to be directly behind 
the camera so that Earth is shadow free. A striking whole-Earth photograph 
was taken by the Apollo 17 astronauts on their way to the Moon in 1972. 
When they were 45,000 kilometers out, they looked back, and there was 
the fully illuminated Earth, like a blue marble suspended in space. The name 
stuck. NASA now has a stunning group of whole-Earth images called the Blue 
Marble series.

This particular version of a blue marble image was obtained in 1997. It is 
one of the most detailed images ever made of Earth. There is a huge storm 
off the west coast of North America—it is Hurricane Linda—and the Moon is 
rising over Earth in the upper left. Hurricane Linda reminds us that the differ-
ent parts of Earth—rocks, water, atmosphere, living things—all interact. The 
Moon reminds us that Earth is a member of the solar system. To know Earth, 
we must understand its parts and the system to which it belongs.
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what is geology?
Learning Objectives

1.	Describe some of the branches of geology.

2.	Explain how scientists use the scientific 
method.

3.	Explain what is meant by a systems 
approach to geology.

4.	Explain how Earth’s major subsystems 
interact, using the concept of cycles.

The word geology comes from two Greek roots: geo-, 
meaning “Earth,” and logis, meaning “study” or “sci-
ence.” The science called geology encompasses the 

study of our planet: how it formed; the nature of its inte-
rior; the materials of which it is 
composed; its water, glaciers, 
mountains, and deserts; its 
earthquakes and volcanoes; its 

resources; and its history—physical, chemical, and biologi-
cal. Scientists who make a career of geology are geologists. 
Geology, like all other sciences, is based on factual obser-
vations, testable hypotheses, reproducible procedures, and 
open communication of information.

The Branches of Geology
The study of geology is traditionally divided into two broad 
subject areas: physical geology and historical geology. 
Physical geology is concerned with understanding the pro-
cesses that operate at or beneath the surface of Earth and the 
materials on which those processes operate. Some examples 
of geologic processes are mountain building, volcanic erup-
tions, earthquakes, river fooding, and the formation of ore 
deposits. Some examples of materials are minerals, soils, 
rocks, air, and water.

Historical geology, on the other hand, is concerned 
with the sequence of events that have occurred in the past. 
These events can be inferred from the evidence left in Earth’s 
rocks. Through the fndings of historical geology, scientists 
seek to resolve questions such as the following: When did 
the oceans form? Why did the dinosaurs die out? When did 
the Rocky Mountains rise? and When and where did the 
frst trees appear? Historical geology gives us a perspective 
on the past. It also establishes a context for thinking about 
present-day changes in our natural environment. This book 
is concerned mainly with physical geology, but it includes 
many lessons we can learn from historical geology.

Within the traditional domains of physical and histori-
cal geology are many specialized disciplines, some of which 
are illustrated in Figure 1.1. Economic geology, for example, 
is concerned with the formation and occurrence of, and the 

search for, valuable mineral deposits. Environmental geol-
ogy focuses on how materials and processes in the natural 
geologic environment afect—and are afected by—human 
activities. Volcanologists study volcanoes and eruptions, 
past and present; seismologists study earthquakes; mineralo-
gists undertake the microscopic study of minerals and crys-
tals; paleontologists study fossils and the history of life on 
Earth; structural geologists study how rocks break and bend. 
These specialties are needed because geology encompasses 
a broad range of topics.

To a certain extent we are all geologists, even though 
only a few of us make a career out of geology. Everyone 
living on this planet relies on geologic resources: water, 
soil, building stones, metals, fossil fuels, gemstones, plastics 
(from petroleum), ceramics (from clay minerals), glass (from 
silica sand), salt (a mineral called halite), and many others. 
Geologic processes afect us every day. Sometimes we must 
make decisions based on our understanding of geology, such 
as how to manage erosion of a coastal property, or whether 
to buy a home located on a clif or next to a river. We also 
infuence the geologic environment through our daily activi-
ties, whether we are drinking water that came from an aqui-
fer, digging a trench, or planting trees to control soil erosion. 
This book will help you to become better informed and more 
mindful of these interactions. As a result, you will be better 
equipped to make decisions about Earth materials and pro-
cesses that afect your life.

Science and the Scientific 	
Method 
Science is an approach that we use to study, observe, clas-
sify, investigate, test, and understand the behavior and char-
acteristics of the world around 
us. The term science also refers 
to the vast body of knowledge 
about the natural world that has 
been built up, little by little, 
over many centuries of system-
atic investigation by scientists. Technology is the application 
of scientifc knowledge for practical purposes. Civilization 
and our entire modern way of life are based on this body of 
knowledge and its applications.

Scientifc knowledge changes constantly; it grows and 
evolves through testing, interpretation, discussion, and 
reexamination. When scientists appear to argue or debate 
their fndings, it means that science is working as it should: 
Scientists tear apart and debate each other’s work to test the 
validity and robustness of the interpretations. It is difcult 
or even impossible for scientists to be completely detached 
from the materials and processes they are studying, but they 
strive to be as objective as they can be. Each new interpreta-
tion is grounded in the context of the scientifc understand-
ing that preceded it. The entire body of scientifc knowledge 
is open to be studied and tested by anyone who is willing to 
put in the efort to do so.

geology  The scientific 
study of Earth.

science  A systematic 
approach to studying 
the natural world.
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       a. Harrison (Jack) Schmitt, a planetary geologist, is
       the only scientist (so far) to walk on the Moon, for
the Apollo 17 mission in 1972. Here, he is collecting a lunar
sample to take back to Earth.

b. Volcanologists get uncomfortably close to the 2002
eruption of Mount Etna in Sicily, Italy, to record the
sounds of the eruption.

        c. Climatologists collect an ice core from a floe
        off thecoast of Antarctica. Ice samples can tell us
about the changes in Earth’s climate over hundreds or
thousands of years.

        e. A seismologist (expert on earthquakes) inspects
        one of the fissures that opened up in the Santa Cruz
Mountains in California during the Loma Prieta earthquake
of 1989.

        d. A paleontologist dives into the waters off the
        Bahama Islands to study stromatolites, a living algal
formation reminiscent of Earth’s oldest fossils.

Geology InSight  Faces and places of geology  •  Figure 1.1

Geologists are privileged to work in some of the most exotic places on Earth—and beyond.

Think Critically
Which of these examples represent physical geology, and 
which represent historical geology? Do some of them 
include aspects of both physical and historical geology?

THE PLANNER
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Like all other scientists, geologists use a logical 
research strategy called the scientific method, which has 

developed through trial and 
error over many years. The 
scientifc method is based on 
observations and the collection 
of evidence that can be seen 
and tested by anyone who cares 
to do so. Although it varies in 
details, it includes the basic 
steps outlined in Figure 1.2.

Let’s consider how the scientifc method might be 
applied in a real geologic situation.

Observe and gather data. Scientists start with a question 
and acquire trustworthy evidence about it, especially mea-
surements. In Figure 1.3, a geologist asks the question “How 
did this group of rocks form?” She observes and measures 
the sequence of layered rocks in question. She sees that the 
layers are horizontal and parallel—important clues. Fur-
thermore, each layer consists of innumerable small grains, 
and the size of the grains varies from layer to layer but is 
approximately the same within each layer.

Formulate a hypothesis. Scientists explain their obser-
vations by developing a hypothesis. The geologist in our 

example develops three hypoth-
eses. She hypothesizes that the 
rocks were formed from mate-
rial that was transported and 
deposited where she has found 
it; but how was it transported? 

Hypothesis 1 is that a glacier was the transporting agent. 
Hypothesis 2 is that wind did the transporting. Hypothesis 3 
is that water did the transporting.

A scientist’s hypotheses are often infuenced by prior 
experience or knowledge. In Chapters 7 and 8 you will learn 
why the three hypotheses in our current example are rea-
sonable explanations. Note that the scientist does not have 
to select one hypothesis at this point. In fact, choosing a 
“leading candidate” too early may prejudice the scientist and 
cause her to overlook some relevant clues. T. C. Chamberlin, 
a 19th-century geologist, argued that scientists should con-
sider all reasonable explanations—an approach he called the 
“method of multiple working hypotheses.”

Test the hypotheses. Scientists use a hypothesis—or mul-
tiple hypotheses—to make predictions and to develop 
tests. The tests may involve controlled experiments in a 
laboratory, further observations and measurements in the 
feld, or possibly the development of a mathematical mod-
el. Geologists in particular like to test their hypotheses 
against real observations. Here’s how our geologist tests 
the hypotheses:

∙∙ She travels to a modern glacier and studies the jumble of 
debris it deposits. She notes that the grains are diferent 
sizes, all mixed up, and not in neatly defned layers. So, 
Hypothesis 1 fails.

∙∙ Then the geologist goes to a desert region where she sees 
wind-transported material deposited in dunes. She ob-
serves that particle sizes are approximately the same, but 
they aren’t in parallel layers; the layers are at odd angles. 
So, Hypothesis 2 fails.

Tests do not support hypotheses

Observe, investigate, and gather data

Formulate one or more hypotheses
to explain observations

Test hypotheses

Tests support one hypothesis

Discard or reformulate hypothesis, 
collect new observations

Hypothesis may become a theory if
supported by many tests

TRASH

Using the scientific method  •  Figure 1.2 

This is a schematic diagram of the scientific method. The formation of a theory occurs only 
at the end, after many investigations and confirmation by many different scientists.

scientific method  The 
way a scientist 
approaches a problem; 
the steps include 
observing, formulating 
a hypothesis, testing, 
and evaluating results.

hypothesis  A plausible 
but yet-to-be-proved 
explanation for how 
something happens.
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Formulating and testing  

hypotheses  •  Figure 1.3 

∙∙ Finally, our scientist visits a lake and observes materials 
transported by a river and deposited in lake water. Now 
she sees layers that are parallel, and the particles in each 
layer are approximately the same size. Hypothesis 3 has 
potential, but more testing is needed.

Retest, test again, and formulate a theory. While visiting 
the lake, our scientist notes that plants are growing in the 
lake. To further verify Hypothesis 3, she takes an addition-
al step and hypothesizes that if the material that formed the 
rocks really was deposited in a lake, the remains of aquat-
ic plants might still be present. If, on further observation, 

she fnds fossilized freshwater plant remains in the layered 
rocks, she will be even more confdent that she is on the 
right track. Verifcation of Hypothesis 3 is now stronger.

Once a hypothesis has withstood numerous tests, scien-
tists become more confdent in 
its validity. If it becomes clear 
that the hypothesis has with-
stood testing and retesting, and 
that it has general applicability 
to more than one specifc cir-
cumstance, it may be elevated 
to a theory. This is still not 

theory  A hypothesis 
that has been tested and 
is strongly supported 
by experimentation, 
observation, and 
scientific evidence.

Hypothesis 1 fails Hypothesis 2 fails

Test:

Visit a modern glacier.
This is the terminus of Pré 
de Bar glacier in the Italian 

Alps.

Test:

Look at a sand dune, a 
modern wind-borne 

sediment. This is a trench in 
a dune near Yuma, Arizona.

Test:

Look at modern water-laid 
sediments. These are in a 
lake in eastern Canada.

Scientist sees a jumble 
of particles of many 
sizes. Layers are not 

parallel.

Scientist sees that 
particles are the same 
size but layers are not 

parallel.

Hypothesis 3 is supported

Hypothesis 2

Sediment transported and 
deposited by wind

Hypothesis 3

Sediment transported and 
deposited in water

Hypothesis 1

Sediment transported and 
deposited by a glacier

TRASHTRASH

Scientist sees particles are 
the same size in each layer,

and layers are parallel.

Observe, investigate, and gather data

Formulate hypotheses to explain observations

Test hypotheses

Discard or confirm hypotheses
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the fnal word, however; a theory is always open to further 
testing. (Note: In everyday speech, people often misuse the 
term theory to mean “hypothesis” by saying dismissively, 
“That’s just a theory.” What they really mean is, “That’s just 
a hypothesis.” In science, by the time a statement attains the 
stature of a theory, it is very substantial and must be taken 
seriously.)

Ultimately, a theory or group of theories that are 
widely applicable may be formulated into a law or prin-
ciple. Laws and principles are statements about some 
natural phenomenon invariably observed to happen in the 
same way, and no deviations have ever been observed. 
For example, in geology the law of original horizontal-
ity states that sediment deposited in water is always in 
horizontal layers (or nearly so, because a lake or seafoor 
might have slight irregularities) and the layers are parallel 
to Earth’s surface (or nearly so). No exceptions have ever 
been observed.

Earth System Science
Traditionally, scientists have studied Earth by focusing on 
separate units—the atmosphere, the oceans, or a single 

mountain range—in isolation from the other units. However, 
the frst photographs of Earth taken from space (like the 
chapter-opening photograph) caused a dramatic rethinking 
of this traditional view. For the frst time, it was possible 
to see the whole planet in one sweeping view. We could 
see everything at a glance—clouds, oceans, polar ice caps, 
and continents—all at the same time and in their proper 
scale. The astronauts, like the rest of us, marveled at Earth’s 
“overwhelming beauty . . . the stark contrast between bright 
colorful home and stark black infnity” (Rusty Schweikart, 
Apollo 9). 

Yet from space it was also clear how small Earth 
is—just a dust speck compared to the vastness of the 
solar system and the universe. On such a small planet, it 
no longer made sense to study all the pieces separately. 
There was only one geology that mattered, not the geology 
of America or the Atlantic Ocean but the geology of the 
whole Earth.

Instruments carried by satellites in space have also 
given us new ways to study the relationships of the parts on 
a global scale, as we never could before (Figure 1.4). This 
new, more all-inclusive view of geology is called Earth sys-
tem science.

Earth from space  •  Figure 1.4 

Satellite images can reveal interactions among Earth systems. In this photo, dust storms from the Sahara Desert blow far out into 
the Atlantic. Geologists have found African dust all the way across the Atlantic Ocean, and some think that it might contribute to 
the death of coral reefs off the coast of Florida and elsewhere.

ATLANTIC OCEAN

AFRICA

SAHARA DESERT
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The System Concept  A systems approach is a helpful 
way to break down a large, complex problem into smaller 

pieces that are easier to study 
without losing sight of the con-
nections between those pieces. 
The scientifc defnition of a 
system allows the observer to 
choose the boundaries and lim-
itations of the system. That is 

why a system is only a concept; you choose its limits for the 
convenience of your study. A system may be large or small, 
simple or complex (Figure 1.5). It could be the contents of 
the beaker in a laboratory experiment or the contents of an 
ocean. A leaf is a system, but it is also part of a larger system 
(a tree), which is part of a still larger system (a forest). 

The fact that we distinguish a system from the rest 
of the universe for specifc study does not mean that we 
ignore its surroundings. In fact, the nature of a system’s 
boundaries is one of its most important defning charac-
teristics, and it helps us understand how a system is infu-
enced by its surroundings. For example, a closed system 
has boundaries that do not allow any matter to enter or 
escape the system. The boundaries may (and in the real 
world, always do) allow energy, such as sunlight, to pass 
through. An example of a closed system would be a per-
fectly sealed oven, which would allow the material inside 
to be heated but would not allow any of that material to 

escape. (Note that in real life, ovens do allow some vapor 
to escape, so they are not perfect examples of closed 
systems.)

A second kind of system, an open system, can exchange 
both matter and energy across its boundaries. An island ofers 
a simple example (see What a Geologist Sees on the next 
page). The system concept can also be applied to artifcial 
environments. For example, urban geographers and land-use 
planners sometimes use a systems approach in the study of 
cities. Enormous fows of energy and materials occur across 
city borders, both in and out.

The Earth System  Earth itself is a very close approxi-
mation of a closed system. Energy enters the Earth system 
as solar radiation. The energy is used in various biologic and 
geologic processes and then departs in the form of heat. Very 
little matter crosses the boundaries of the Earth system. We 
do lose some hydrogen and helium atoms from the outer 
atmosphere, and we gain some material in the form of mete-
orites. However, for most purposes, especially over the short 
term, we can treat Earth as a closed system.

The fact that Earth is a closed system (on the scale 
of the time that humans have existed) has three important 
consequences. First, because the amount of matter in a 
closed system is fxed and fnite, the mineral and fossil fuel 
resources on this planet are all we have and all we will ever 
have until we learn to mine other planets. Second, all the 

system  A portion of 
the universe that can be 
isolated for the purpose 
of observing and 
measuring change.

Systems  •  Figure 1.5 

This figure shows a variety of systems and smaller subsystems. The entire diagram—mountains, river, and lake—illustrates one 
kind of system: a coastal watershed. The individual pieces enclosed by boxes, such as the river, are also systems. Even small vol-
umes of water or lake sediment (foreground boxes) are systems in their own right.
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What a Geologist Sees

An Island Is Not a Closed System

To a casual tourist, the island of Bora Bora (shown here, left) may seem like a closed system, isolated from the rest of the 
world, a great place to “get away from it all.” But how isolated is it, really?

A geologist would look at this volcanic island and see the 
forested slopes as evidence of abundant precipitation; the 
flat area between the mountain and the sea as evidence of 
erosion transferring material from the mountain toward 
the sea; and, in the foreground, coral reefs growing on the 
shallow, submerged part of the island as evidence of warm 
waters and plentiful nutrients. A geologist, like all other sci-
entists, would conclude that the island is an open system.

Think Critically
Bora Bora (shown in the photo) is a volcanic island. The 
volcano is considered to be extinct, but suppose it were 
just dormant and waiting to erupt again. How would you 
modify the diagram to describe the inputs and outputs of 
matter and energy during an eruption? 

THE PLANNER

Recall that an open system allows both matter and 
energy to cross its boundaries. Energy (in the form of 
sunlight) and matter (in the form of precipitation) reach 
the island from outside sources. Energy leaves the island 
as heat. Matter in the form of water either evaporates or 
drains into the sea. Birds may fly into and out of the sys-
tem. In the modern era, humans may also bring materials 
into and out of the system by importing and exporting re-
sources. In all of these ways, the system exchanges matter 
and energy with its surroundings.

waste materials we develop remain within the 
confnes of the Earth system; or, as environmen-
talists say, “There is no away to throw things 
to.” Third, if changes are made in one part of 
a closed system, the results of those changes 
eventually will afect other parts of the system. 
For instance, when we divert a river to provide 
drinking water for a city, we may deplete the 
water resources somewhere else (Figure 1.6).

Earth’s Interconnected 
Subsystems
The Earth system can be divided into four very 
large subsystems: the geosphere, biosphere, 
atmosphere, and hydrosphere (Figure 1.7). 
These can be further subdivided into many 

subsystems of interest to geologists; for exam-
ple, the hydrosphere consists of oceans, glacial 
ice, streams, lakes, groundwater, and so on.

The geosphere may come to mind as being 
most important for geologists, but in fact all four 
spheres play important roles in geology. Plants 
draw nutrients from the lithosphere and incorpo-
rate them into the biosphere. When they die and 
decompose, the material they contain may enter 
the atmosphere or return to the lithosphere. Rocks 
erode, and the minerals they contain become salts 
in the hydrosphere; evaporation returns these salts 
to the geosphere. The exchanges of materials 
between spheres never stop.

The four major Earth reservoirs interact 
most intensively in a narrow life zone, a region 
that extends to about 10 kilometers above and 

geosphere  The solid 
Earth, as a whole.

biosphere  The system 
consisting of all living 
and recently dead 
organisms on Earth.

atmosphere  The 
envelope of gases that 
surrounds Earth.

hydrosphere  The 
system comprising all 
of Earth’s bodies of 
water and ice, both 
on the surface and 
underground.

Matter out:
Evaporation from

lakes, streams, and soil

Energy in:
Sunlight
(energy)

Matter in:
Precipitation

Matter out: Water drains into the sea

Energy out:
Heat

(energy)
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HydrosphereGeosphere

Atmosphere

Biosphere

Upstream changes have 

downstream impacts  •   

Figure 1.6 

The Colorado River and its trib-
utaries provide drinking water 
to 25 million people and irrigate 
1.4 million hectares of agricul-
tural fields. Because of mas-
sive upstream diversions, little 
water makes it all the way to 
the Gulf of California in Mexico. 
Consequently, the river has 
become a broad mudflat where 
it enters the gulf, as seen in this 
photo. This demonstrates how 
changes made in one part of a 
system eventually affect other 
parts of the system.

Earth’s subsystems: The four “spheres”  •  Figure 1.7 

Earth’s four principal subsystems are the 
geosphere, biosphere, atmosphere, and 
hydrosphere. Both matter and energy 
cycle among these subsystems, making 
them open systems.
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